

Institut Laue Langevin, Grenoble, France.

Poor qubits make for rich physics: noise-induced Zeno effect & noise-induced Berry phases.

Robert S. Whitney

ICNF - Pisa, June 2009

Summary

Qubits in Markovian & non-Markovian noise

- ♦ Intro: Quantum Zeno paradox (no noise)
- Noise-induced Zeno paradox and "super"-Zeno paradox
- Experts: dangers of adiabatic renormalization group

- Intro: Berry phase (no noise)
- Noise-induced Berry phase

Qubits: fully controllable two-level systems

Saclay qubit: Vion et al (2002)

$$\mathcal{H} = B_x \hat{\sigma}_x + B_y \hat{\sigma}_y + B_z \hat{\sigma}_z$$

+ NOISE

or quantum environment

Noise making quantum physics richer?

NO NOISE:

System characterized by wavefunction, $|\psi\rangle = u|\uparrow\rangle + v|\downarrow\rangle$

two-levels \Rightarrow *TWO* independent variables

n-levels $\Rightarrow (2n-2)$ independent variables

since $|u|^2+|v|^2=1$ & drop overall phase

♣ WITH NOISE ≡ WITH QUANTUM ENVIRONMENT

System characterized by density matrix, $\rho = \begin{pmatrix} a & b + \mathrm{i}c \\ b - \mathrm{i}c & 1 - a \end{pmatrix}$

two-levels ⇒ *THREE* independent variables

n-levels $\Rightarrow (n^2 - 1)$ independent variables

Markovian and non-Markovian noise

QUBIT (spin-half) +noise

$$\mathcal{H} = \mathcal{H}_{\text{qubit}} + \hat{\sigma}_z B_z(t)$$

MARKOVIAN: $\Gamma \tau_{\rm mem} \ll 1$

 \Rightarrow system weakly affected by noise on timescales au_{mem}

NON-MARKOVIAN:

$$\Gamma \tau_{\rm mem} \gg 1$$

Markovian and non-Markovian noise

QUBIT (spin-half) +noise

$$\mathcal{H} = \mathcal{H}_{\text{qubit}} + \hat{\sigma}_z B_z(t)$$

MARKOVIAN: $\Gamma \tau_{\rm mem} \ll 1$

 \Rightarrow system weakly affected by noise on timescales au_{mem}

NON-MARKOVIAN:

$$\Gamma \tau_{\rm mem} \gg 1$$

QUBIT (spin-half) +environ.

$$\mathcal{H} = \mathcal{H}_{\text{qubit}} + \hat{\sigma}_z K(\hat{a}^{\dagger} + \hat{a}) + \mathcal{H}_{\text{env}}$$

Quantum Zeno paradox

Misra- Sudarshan (1977)

Zeno (400BC):

paradoxes with summing infinite series, fully resolved by Cauchy in 1808s

QUANTUM clock:

spin-half precessing

OBSERVATION: measure spin along z-axis

$$|u|\uparrow\rangle + v|\downarrow\rangle \Longrightarrow \begin{cases} |\uparrow\rangle \text{ with prob.= } |u|^2 \\ |\uparrow\rangle \text{ with prob.= } |v|^2 \end{cases}$$

B-field in x-direction

Observation at intervals $\tau_{\rm obs}$

 \longrightarrow spin-flip time $\sim 1/(B_x^2 au_{\rm obs})$

cf. no observations

 \longrightarrow spin-flip time $\sim 1/B_x$

Noise-induced Zeno paradox Blanchard et al (1994)

White-noise— strictly Markovian

Damped harmonic oscillator eqn for z-axis spin polarization, s_z

underdamped $(B_x\gg\Gamma)$: $s_z\sim\exp[\mathrm{i}B_xt-\Gamma t]$

OVERdamped
$$(B_x \ll \Gamma)$$
: $s_z \sim \exp\left[-\frac{B_x^2 t}{\Gamma}\right] \Rightarrow \text{spin-flip time} \sim \frac{\Gamma}{B_x^2}$

— analogy to usual quantum Zeno with $\Gamma \sim 1/ au_{\rm obs}$ Berry (1995)

Adiabatic renormalization

Legget et al (1987)

QUBIT +environment : $\mathcal{H} = B_x \hat{\sigma}_x + \hat{\sigma}_z K(\hat{a}^{\dagger} + \hat{a}) + \mathcal{H}_{env}$

no excited env modes

$$\langle \mathbf{j}; \mathbf{A} | \mathbf{j}; \mathbf{B} \rangle = 1 - K_j^2 / \Omega_j^2$$

Franck-Condon

 $\xrightarrow{\text{spin}}^{Z}$

cf. Anderson orthogonality catastrophe

Overlap =
$$\prod_j \langle j; A | j; B \rangle = \exp \left[-\sum_j K_j^2 / \Omega_j^2 \right] \sim \exp[-\Gamma \tau_{\rm mem}]$$

$$\hat{\sigma}_x \rightarrow \hat{\sigma}_x \times \exp[-F]$$

spin-flip time
$$\sim \frac{\exp[+\Gamma au_{\mathrm{mem}}]}{B_x}$$

Exponentially slow → "super" Zeno effect

For experts: beyond Born-Oppenheimer

ADIABATIC RENORMALIZATION ARGUMENT qubit + N modes = qubit + highest mode + (N-1) modes

= renormalized qubit + (N-1) modes

Use Born-Oppenheimer mode-by-mode requires $B_x \to 0$ faster than Ω_{highest} ...but do "irrelevant" terms flow $\to 0$?

 \clubsuit *POLARON MAPPING* [Mahan's book, Aslangul et al 86, Dekker 87] *Magic mapping: non-Markovian* \to *Markovian* for most env + *perturbation theory on new* \mathcal{H} (equiv to NIBA)

Terms missed by RG; in x,y-polarization but not z-polarization. New rate $\sim \frac{B_x^2 B_z au_{\mathrm{mem}}^2}{(\Gamma au_{\mathrm{mem}})^{3/2}}$ powerlaw in Γ not exponential

Quick Intro to the Berry phase Berry [1984]

Observed in qubits Leek et al (2007)

Proposed uses: metrology

Pekola et al (1999)

quantum computing

Jones et al (2000)

Rotate B-field

$$\Phi_{\mathrm{Berry}}$$
 = solid-angle = monopole field = $2\pi(1-\cos\theta)$

But Berry phase not alone:

$$\Phi_{\text{total}} = \Phi_{\text{dyn}} + \Phi_{\text{Berry}} + \Phi_{\text{NA}}^{(1)} + \Phi_{\text{NA}}^{(2)} + \cdots$$

where $\Phi_{\mathrm{NA}}^{(\mu)} \sim (|B|t_{\mathrm{p}})^{-\mu}$

Measure Φ_{Berry} with accuracy of 1 in 1000 $\to Et_{\mathrm{p}} \sim 10^{-3}$

Then $\Phi_{\rm dyn}\sim$ 1000 $\Phi_{\rm Berry}$

so must subtract Φ_{dyn} with accuacy of 1 in 10⁶

Rotating frame for Berry phase and non-adiab phases Berry [1987]

Lab frame

Rotating frame

$$\Phi_{\text{total}} = |\mathbf{B} + \boldsymbol{\omega}|t_{\text{p}} = Bt_{\text{p}} + \omega t_{\text{p}} (1 - \cos \theta) + \mathcal{O}[\omega^2 t_{\text{p}}]$$
with $\omega t_{\text{p}} = 2\pi$

Go from strongly time-dependent problem

to (almost) time-independent problem

General transformation:

$$\mathcal{H}_{\text{rot}} = i[d[\mathcal{U}/dt]\mathcal{U}^{-1} + \mathcal{U}\mathcal{H}_{\text{lab}}\mathcal{U}^{-1}]$$

Making Berry phases with noise alone?

Quantum equivalent (harder to realize)

Noise-induced Berry phase

Rotate MARKOVIAN environment:

Carollo et al (2006) Dasgupta-Lidar (2007) Syzranov-Makhlin (2008)

Total phase as for conventional Berry phase

+ decoherence time $T_2 \ll t_{\rm P}$

tricks to keep phase (decoherence-free subspace)

Rotate NON-MARKOVIAN environment:

$$\Phi_{\rm total} = \Phi_{\rm Berry} + \Phi_{\rm NA}^{(2)} + \cdots$$
 with $\Phi_{\rm NA}^{(2)} \sim 1/(\Gamma^{3/2} \tau_{\rm mem}^{-1/2} t_{\rm p}^2)$

Measure Φ_{Berry} to 1 in 1000 $\to E_2 t_{\mathrm{p}} \sim 10^{-3/2} \simeq$ 31

Also decoherence not significant for $\Gamma t_{\rm p} > 1$ less decoherence in long expt!

Why is noise-induced Berry phase like this?

Why a Berry phase?

Rotating frame:

"super"-Zeno effect suppresses ω_{\perp}

$$\Rightarrow \omega_{\parallel}$$
 gives Φ_{BP}

Why so little decoherence?

Magic of non-Markovian env.

No decoherence without transverse field

Why so little non-adiabaticity?

Not sure yet!

Conclusions

- Rich quantum physics with non-Markovian noise
- orthogonality catastrophe or "super" Zeno effect

- \clubsuit non-Markovian noise makes a "better" Berry phase get rid of unwanted Φ_{dyn} or $\Phi_{NA}^{(1)}$
- What other new things can noise do?
- Don't slip up

