Institut Laue Langevin, Grenoble, France.

Grenoble, Avril 2008

Which theory for dissipation in quantum systems (such as qubits) ?

Robert S Whitney

Discussions:

J. Siewert (Regensburg)

Y. Gefen (Weizmann) A. Shnirman (Karlsruhe)

S. Stenholm (Stockholm) M. Clusel (NYU)

D. O'Dell (McMasters) M. Hall (Australian Nat. Univ.)

Reference: R.W., J. Phys. A: Math. Theor. 41, 175304 (2008)

Overview — Two theories of dissipation

[1] Phenomenological method Lindblad (1976) — rigorous

[2] Microscopic method Bloch-Redfield (1957) — perturbative

RESULTS DISAGREE Dumcke-Spohn (1980)

YET Bloch-Redfield (perturb.) remains most popular theory for solid-state qubits!

Minor improvement to perturb. method

More powerful Less user-friendly

Why dissipative quantum mechanics?

No quantum system is isolated ⇔ energy exchange

Dissipation: common in quantum world as in classical world

Quantum optics: decay of excited atomic state

- Chemical physics: most reactions
- $2Na_2(s)+2HCl(aq)\rightarrow 2NaCl(aq)+H_2(g)$
- Statistical physics: what is equilibrium?
- Solid-state: Resistance in nanoscale circuits
- Quantum information: Decoherence of gubits
- Philosophy: No Schrödinger cats in everyday life

density matrix \neq $\left(\begin{vmatrix} \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet \end{vmatrix} \right)$

Summary of previous works

Phenomenological method

- Know nothing about environ.
- Know system dynamics are physical
 - ⇒ Probabilities are real, positive and sum to one
- + rigorous

Microscopic method

- Know everything about environ.
 - \Rightarrow know $\hat{\mathcal{H}}_{\mathrm{universe}}$
- + typically perturbative

system

Road-map of previous works

+ EXACTLY SOLUBLE MODELS (non-generic)

Why use the perturbative method?

...but rigorous method is phenomenological

cf. superconductor: Landau-Ginzberg vs. BCS

Only a microscopic theory can answer certain questions:

- dependence on environ. temperature?
- dependence on environ. spectrum?
- How do we engineer system to *minimize* decoherence?

Perturbative method *usually* gives "plausible" results but it sometimes generates negative probabilities ...so can we really trust it??

Density-matrix and Bloch-sphere

Observable: $\langle \hat{O} \rangle_t = \operatorname{tr} \left[\hat{O} \, \hat{\rho}(t) \right]$

Evolution: $\frac{\mathrm{d}}{\mathrm{d}t}\hat{\rho}(t) = -\mathrm{i}\left[\hat{\mathcal{H}},\hat{\rho}(t)\right] + \mathrm{dissipation}$

Any two-level system \equiv spin-half

$$\hat{\rho}(t) = \frac{1}{2} \begin{pmatrix} 1 + \langle \hat{\sigma}_z \rangle_t & \langle \hat{\sigma}_x \rangle_t - i \langle \hat{\sigma}_y \rangle_t \\ \langle \hat{\sigma}_x \rangle_t + i \langle \hat{\sigma}_y \rangle_t & 1 - \langle \hat{\sigma}_z \rangle_t \end{pmatrix}$$

Lindblad's master equation

$$\frac{\mathrm{d}}{\mathrm{d}t}\hat{\rho}(t) = -\mathrm{i}\big[\hat{\mathcal{H}},\hat{\rho}(t)\big] - \mathcal{L}[\hat{\rho}(t)]$$

For set of "orthogonal" and "normalized" operators, \hat{L}_n s.,

$$\mathcal{L}[\hat{
ho}(t)] \equiv \sum_{n} \lambda_{n} \left(\hat{L}_{n}^{\dagger} \hat{L}_{n} \hat{
ho}(t) + \hat{
ho}(t) \hat{L}_{n}^{\dagger} \hat{L}_{n} - 2 \hat{L}_{n} \hat{
ho}(t) \hat{L}_{n}^{\dagger} \right)$$
 with no negative λ_{n} s

Lindblad proved: All other master equation are unphysical negative probabilities

Rigorous proof based on following postulates:

- Evolution continuous in time
- Eqn. translationally invarient in time
- physical ≡ "complete positivity"

Understanding Lindblad eqn.

Eqn. is remarkable simple!!

"Markovian" — evolution is function of $\hat{\rho}(t)$ not $\int \mathrm{d}t'\hat{\rho}(t')(...)$ $\frac{\mathrm{d}}{\mathrm{d}t}\hat{\rho}(t) = -\mathrm{i}\left[\hat{\mathcal{H}},\hat{\rho}(t)\right] - \mathcal{L}[\hat{\rho}(t)]$

Example: spin-half with one env.-coupling $\hat{L}_1=\hat{\sigma}_z$

$$\mathcal{L}[\hat{\rho}(t)] \equiv \lambda \left(2\hat{\rho}(t) - 2\hat{\sigma}_z \hat{\rho}(t)\hat{\sigma}_z \right) = 2\lambda \begin{pmatrix} 0 & \langle \hat{\sigma}_x \rangle - \mathrm{i} \langle \hat{\sigma}_y \rangle \\ \langle \hat{\sigma}_x \rangle + \mathrm{i} \langle \hat{\sigma}_y \rangle & 0 \end{pmatrix}$$

In General:

For
$$\lambda_n>0$$
 — decay in all directions \perp to \hat{L}_n … but for $\lambda_n<0$ — growth

Positivity and complete positivity

Complete positivity

All $completely\ positive$ dynamics are also positive

Ocassionally the two are equivalent – as for my 2-level system model

Bloch-Redfield's master equation I

Hamiltonian:

$$\hat{\mathcal{H}}_{\mathrm{univ}} = \hat{\mathcal{H}}_{\mathrm{sys}} + \hat{c\hat{\Gamma}\hat{X}} + \hat{\mathcal{H}}_{\mathrm{env}}$$
 perturbation

Evolution: $\hat{\rho}(t) = \exp[-i\hat{\mathcal{H}}_{\text{univ}}t] \hat{\rho}(0) \exp[i\hat{\mathcal{H}}_{\text{univ}}t]$

$$\hat{\rho}(t) = |\psi(t)\rangle\langle\psi(t)|$$

Second-order perturbation theory:

2nd order in $\exp[-i\hat{\mathcal{H}}_{univ}t]$

2nd order in $\exp[i\hat{\mathcal{H}}_{univ}t]$

1st order in both

Bloch-Redfield's master equation II

Excite env mode,
$$\omega$$

$$t'-\tau \qquad t'$$

$$\omega$$
—distribution
$$f(\tau)$$

$$\omega$$
—memory time
$$f(\tau)$$

$$\psi$$
—memory time

$$\hat{\Gamma} = \mathbf{O} \qquad \qquad f(\tau)$$

$$\hat{\Xi}(t) = \mathbf{D} \equiv \int_0^t d\tau \qquad \underbrace{}_{t'-\tau} \underbrace{}_{t'}$$

Dissipative part of $\frac{d}{dt}\hat{\rho}(t)$

$$\mathcal{L}[\hat{\rho}(t)] = c^2 \left(\hat{\Gamma} \hat{\Xi}(t) \hat{\rho}(t) + \hat{\rho}(t) \hat{\Xi}^{\dagger}(t) \hat{\Gamma}^{\dagger} - \hat{\Xi}(t) \hat{\rho}(t) \hat{\Gamma}^{\dagger} - \hat{\Gamma} \hat{\rho}(t) \hat{\Xi}^{\dagger}(t) \right)$$

Bloch-Redfield in Lindblad's form

[spin-1/2 - Dumcke-Spohn (1979)]

Dissipative part of $\frac{d}{dt}\hat{\rho}(t)$

$$\mathcal{L}[\hat{\rho}(t)] = c^2 \Big(\hat{\Gamma} \hat{\Xi}(t) \hat{\rho}(t) + \hat{\rho}(t) \hat{\Xi}^{\dagger}(t) \hat{\Gamma}^{\dagger} - \hat{\Xi}(t) \hat{\rho}(t) \hat{\Gamma}^{\dagger} - \hat{\Gamma} \hat{\rho}(t) \hat{\Xi}^{\dagger}(t) \Big)$$

- Operators not orthogonal (unlike Lindblad) ⇒ ORTHOGONALIZE
- ullet Cross coupling \Rightarrow DIAGONALIZE

$$\mathcal{L}[\hat{
ho}(t)] = \sum_{n=1,2} \lambda_n \left(\hat{L}_n^{\dagger} \hat{L}_n \hat{
ho}(t) + \hat{
ho}(t) \hat{L}_n^{\dagger} \hat{L}_n - 2 \hat{L}_n \hat{
ho}(t) \hat{L}_n^{\dagger} \right)$$

...same as rigorous eqn. with $\lambda_2 \propto -c^2 \Leftarrow always$ negative

2-level system with $\hat{\mathcal{H}} \propto \hat{\sigma}_z$ & $\hat{\Gamma} = \hat{\sigma}_x$

Obituary for perturbative method 1957-1979

Rigorous theory says "negative λ means negative probs."

We have $\lambda_2 < 0$ for any c

⇒ perturbative method unphysical

Numerics confirm negative probabilities - Gaspard & co-workers

Resurrection of perturbative method

Forgot $\hat{\Xi}(t)$ is time-dependent

- Invalidates rigorous proof !! Assumption that eqn. is time-indep.
- Numerics change with t-depend. Gaspard & co-workers

OPEN QUESTION: Does perturb. method avoid negative probs. ??

Time-dependence of parameters

$$\frac{\mathrm{d}}{\mathrm{d}t}\hat{\rho}(t) = -\mathrm{i}\Big[\hat{\mathcal{H}},\hat{\rho}(t)\Big] - \mathcal{L}[\hat{\rho}(t),t]$$

Time-dependent $\mathcal{L}[\hat{
ho}(t),t]$ since $\hat{\Xi}(t)=\Box$ \equiv $\int_0^t \mathrm{d} au$

Analogy: without matrix structure

$$\frac{\mathrm{d}}{\mathrm{d}t}y(t) = (\mathrm{i}h - F(t))y(t)$$

where $F(t) \rightarrow f$ for $t \gg$ memory time

Approx:
$$\frac{\mathrm{d}}{\mathrm{d}t}y(t) = (\mathrm{i}h - f)y(t)$$

Trivial to solve, but incorrect for $t \sim$ memory time

Proving positivity for short memory-times

... continue analogy
$$\frac{d}{dt}y(t) = (ih - G(t))y(t)$$

[I] Short-times $t \ll 1/G(t)$

$$y(t) \simeq \left[e^{iht} - \int_0^t dt' e^{ih(t-t')} G(t') e^{-iht} + \mathcal{O}[G^2] \right] y(0)$$

[II] Long-times $t > t_0 \gg$ memory-time

$$\frac{\mathrm{d}}{\mathrm{d}t}y(t) \simeq (ih-g)y(t)$$
 $\Rightarrow y(t) \simeq \mathrm{e}^{(ih-g)(t-t_0)}y(t_0) + \mathcal{O}[G-g]$

Large overlap of regimes if memory time $<<1/|G(t)|\sim c^{-2}$

Do same with matrix eqn. for $\hat{\rho}(t)$

Check purity is not greater than $ONE \Rightarrow$ No negative probs.

i.e. find maxima of purity

- constraint: initial state is physical

...but NEED form for f(au) cf. G(t) above

Memory funct. $f(\tau)$ memory time

Two-level system

Simplest system: Two-level system

Simplest environment: [a] smooth very-broad spectrum of excitations

[b] high temperature

 \Rightarrow Memory time \ll system dynamics

Simplest coupling:
$$\hat{\Gamma}=\hat{\sigma}_x$$

Simplest coupling:
$$\hat{\Gamma} = \hat{\sigma}_x$$
 $\Rightarrow \hat{\mathcal{H}}_{\mathrm{univ}} = -B\hat{\sigma}_z + c\hat{\sigma}_x\hat{X} + \hat{\mathcal{H}}_{\mathrm{env}}$

Proven: NO negative probabilities

Example: initial state = $|\uparrow_x\rangle$ neglect t-depend.

$$purity = 1 + c^2t$$

keep t-depend.

$$\text{purity}{=1-c^2t^3/t_{\mathrm{m}}^2}$$

Conclusions

Regimes of applicability of theories:

... but NEED to keep *time-dependence* in perturbative method

+ perturbative method is microscopic

Enabling study of how dissipation is affected by environment details (temperature, spectrum, etc)