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Overview — Two theories of dissipation

1] Phenomenological method Lindblad (1976) — rigorous
2] Microscopic method Bloch-Redfield (1957) — perturbative

RESULTS DISAGREE Dumcke-Spohn (1980)

rigorous

YET Bloch-Redfield (perturb.) remains
most popular theory for solid-state qubits!

Minor improvement
to perturb. method

More powerful .
rigorous

Less user-friendly




Why dissipative quantum mechanics?

No quantum system is isolated < energy exchange

Dissipation: common in quantum world as in classical world
—o—

® Quantum optics: decay of excited atomic state l,m

® Chemical physics: most reactions 2Nas (s)+2HCl(aq)—2NaCl(aq)+Hza(g)
@ Statistical physics: what is equilibrium?

® Solid-state: Resistance in nanoscale circuits

® Quantum information: Decoherence of qubits

® Philosophy: No Schrédinger cats in everyday life
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Summary of previous works
Phenomenological method

e Know nothing about environ. (system }“’)’)’?

e Know system dynamics are physical
—> Probabilities are real, positive and sum to one
+ rigorous

Microscopic method

e Know everything about environ. [SyStem }“{ environ |

= know 7_(universe
+ typically perturbative

"universe"




Road-map of previous works

MICROSCOPIC PHENOMENOLOGICAL
(mostly perturbative) (rigourous)
Bloch (1957) — Lindblad (1976)
Redfield (1957) Kraus (1983)

Nakajima (1958)
Zwanzig (1960)

Scholler-Schon (1994) diagrams

Spin-boson model
\\—Leggett et al (1987)

Chemical Solid state Quantum  Mathematical
Physics AV V4 Optics Physics
QUBITS

+ EXACTLY SOLUBLE MODELS (non-generic)

Why use the perturbative method?

...but rigorous method is
phenomenological

cf. superconductor: Landau-Ginzberg vs. BCS

Only a microscopic theory can answer certain questions:
® dependence on environ. temperature?
® dependence on environ. spectrum?

® How do we engineer system to minimize decoherence?

Perturbative method usually gives “plausible” results
but it sometimes generates negative probabilities

...S0 can we really trust it??




Density-matrix and Bloch-sphere
Observable: (O); = tr [O p(t)]
Evolution: Z5(t) = —i[ﬂ,ﬁ(t)]Jr dissipation

Any two-level system = spin-half
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Lindblad’s master equation
La(t) = —i[H, p(1)] — L[H(1)]
For set of “orthogonal” and “normalized” operators, Ls.,
L) = S A (B Lap(t) + 50 L] L — 2Lnp(t) L)
with no negative \,,s

Lindblad proved: All other master equation are unphysical
— negative probabilities

Rigorous proof based on following postulates:
® Evolution continuous in time
® Eqn. translationally invarient in time
® - - -

® physical = “complete positivity”




Understanding Lindblad eqn.

Eqn. is remarkable simple!!

“Markovian” — evolution is function of p(¢t) not [d¢'p(¢')(...)
$a(t) = =i [, ()| - £1p()]

Example: spin-half with one env.-coupling L, =6,

Llp(t)] = A(%(t) — 26zﬁ(t)52> _ 9 ( 0 <&w>—i<&y>>

(62)+i(5y) 0

In General: )
For A\,, > 0 — decay in all directions L to L,

... but for A, < 0 — growth

Positivity and complete positivity
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All completely positive dynamics are also positive
Ocassionally the two are equivalent — as for my 2-level system model
M. Hall, arXiv:0802.0606




Bloch-Redfield’s master equation |

Hamlltonlan system environ
Huniv = 7_(sys @+ 7_(env “

perturbation

"universe"
Evolution: p(t) = exp[—iHunivt] p(0) exp[iHunivt]
. ¥(0)) e > o |y(7)
5() = () ()] 010 e e W)
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Second-order perturbation theory:
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Bloch-Redfield in Lindblad’s form  [spin-1/2 - Dumcke-Spohn (1979)]
Dissipative part of & 5(t)
Llp(t)] = A (TEWp) +pET (T = E@)HTT - TH(1)ET (1))

® Operators not orthogonal (unlike Lindblad) = ORTHOGONALIZE
® Cross coupling = DIAGONALIZE

LIHE] = S e o M (L Enp(t) + p(O) L] Lo = 2Lnp(t) L)

2

...same as rigorous egn. with As ox —c* < always negative

2-level system (b)
WitAh Hox o,
&I'=06,

s

Obituary for perturbative method 1957-1979

Rigorous theory says
“negative A\ means negative probs.”

We have A\, < 0 for any c
= perturbative method unphysical

Numerics confirm negative probabilities - Gaspard & co-workers

Resurrection of perturbative method
Forgot =(¢) is time-dependent
e Invalidates rigorous proof !!'  Assumption that egn. is time-indep.

® Numerics change with t-depend. — Gaspard & co-workers

OPEN QUESTION: Does perturb. method avoid negative probs. ??




Time-dependence of parameters

4 p5(t) = —1[7%, ﬁ(t)] — L[p(t), 1]

t f(v)
Time-dependent L[p(t),t] since Z(t) = o0 = / dr «o——=
0 -t t’
time—dependen} system timescale
. r—\—d—&’\
0 1z, coupling dissipative timescale
it : >
< - > time, ¢
short times .
; long times .

Analogy: without matrix structure
siy(t) = (ith — F(6)y(t)
where F(t) — f fort > memory time
Approx: gy(t) = (ih — f)y(t)
Trivial to solve, but incorrect for £ ~ memory time

Proving positivity for short memory-times

(ih = G(1))y(t)

.. continue analogy ~ Ly(t)

[I] Short-times t < 1/G(t)
y(t) ~ [eiht _ fot dt/eih(t—t/)G(t/)e—iht+O[G2]] y(o)

[Il] Long-times t > ty > memory-time _

$y(t) = (ih — g)y(1) = y(t) = elh=9=t)y (1)) 10[G—g)

Large overlap of regimes if memory time << 1/|G(¢)| ~ ¢ 2

Do same with matrix eqn. for p(t)
Check purity is not greater than ONNE = No negative probs.

i.e. find maxima of purity Memory funct.

— constraint: initial state is physical fir) \L—memory time
...but NEED form for f(7) cf. G(t) above N

T




Two-level system
Simplest system: Two-level system
Simplest environment:  [a] smooth very-broad spectrum of excitations
[b] high temperature
=> Memory time << system dynamics

A A

Simplest coupling: I' = &, = Huyniv = —Bo. +¢co,. X + Henv

Proven : NO negative probabilities

Example: initial state = | 1;)
neglect t-depend.
purity= 1 + c*t
keep t-depend.
purity= 1 — 3 /2,

Conclusions

Regimes of applicability of theories:

/ 7 / POSITIVITY
' rigorous
1 strictly zero memory

perturbative
very short memory

P ///// << system dynamics
/ perturbative

<

For two-level system
with | env.—coupling

Q

o l Good small parameter
memory << dissipation times L | but NO proof
non-perturbative NOl

memory > dissipation times T}&RY
... but NEED to keep time-dependence in perturbative method
+ perturbative method is microscopic

Enabling study of how dissipation is affected by

environment details (temperature, spectrum, etc)




