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Quantum chaos

semiclassical classically chaotic

Average transport properties: 

      "F  <<  W  <<  L

 Stone’s group Nature (2000)

Quantum mechanics of
    a classically chaotic system.

Individual chaotic systems: unique

…but average properties: UNIVERSAL (often RMT)

AIM : understand universality

chaotic lasing cavity



Random matrix theory (RMT)

UNIVERSALITY: Quantum chaotic systems fit RMT

 ! spectrum of N-particles in nuclei

 ! spectrum of hydogen atom in strong B-field

 ! spectra of particles in many chaotic potentials

(Sinai billiard, stadium, etc)

Quantum system with a random Hamiltonian.

Matrix elements are randomly chosen (but symmetric/Hermitian).

One parameter :  width of gaussian distribution of elements

closed system :  level-statistics (level-repulsion, GOE, GUE, etc)

open system : !  weak localisation (magnetoconductance) = -1/4

        ! universal conductance fluctuations = 1/8

      ! shot noise : Fano factor = 1/4

Chang et al, PRL 73, 2111 (1994)

chaotic

integrable

Transport measurements

If we have:
    (i) chaos
    (ii) few short paths

   then beautiful

          RMT properties?

 Webb-Washburn (1988)

chaotic disorder

Keller et al, Surf. Sci  305, 501 (1994)

! Universal conductance fluctuations

 … err, NO!!

1/#D

chaotic

S. Oberholzer et al,  Nature 415, 765 (2002)

!  Magneto-conductance 

      (weak localization)

!  Intrinsic quantum noise (shot noise)



Why does random matrix theory work so well ?

Why doesn’t random matrix theory work ?

Ehrenfest time, tE,  a measure of  classical-ness

      Random matrix  Classical
            regime         limit

system size

wavelength

10

The Ehrenfest time, tE .

Ehrenfest time = time for minimal wavepacket to spread

over system’s phase-space

Lypunov exponent

Wavepacket spreads under classical chaotic flow
if potential is smooth on scale of  "F

Cf. Potential with $-correlated disorder: 

  wavepacket covers momentum-space after #

    and diffuses in position-space " tE ~ tThouless ! (L#/vF)1/2

L

Aleiner-Larkin, PRB 54, 14423 (1996)



Ehrenfest time in expt and numerics

Shot noise experiment 
Oberholzer et al. (2002)

Fano factor (ratio to Poissonian noise) :   

        F ~ 1/4 % exp[- tE/#D]

1/#D

Weak-localization dip 
   in magneto-conductance 
  

Numerics (kicked rotator map)  
   Ph. Jacquod & R.W cond-mat/0512662

       gwl ~ -1/4 % exp[- tE/#D]

See also Rahav-Brouwer, PRL 95, 056806 (2005); cond-mat/0507035 (2005)  

         contradicts earlier numerics by Tworzyd!o et al, PRB 70, 205324 (2004)        

“Old” theory : quasiclassics with disorder

Diffusons/Cooperons for s-wave disorder:  scatterer size < wavelength

Diffusons/Cooperons for smooth disorder
Aleiner-Larkin, PRB 54, 14423 (1996),

Agam-Aleiner-Larkin, PRL 85, 3153 (2000)

Rahav-Brouwer, PRL 95, 056806 (2005)

eqn. motion for “diffuson” :

    [-i & +L + '!(/())2] D(&;1,2) = $(1,2)

scatterer size >> wavelength

l

Model for clean chaotic systems?
Does give qualitatively correct answers.  (universality?)

Price: ! introduce fictitious disorder        !UGLY!!
! wrong Ehrenfest time:  tE ~ ln [l/"F] 

! techically demanding

!  breaks time-reversal symm.  at classical & quantum level 

We want simpler model  for  clean system

using only basic assumptions about classical chaos



Semiclassics = geometric optic

Particles follow classical paths but with phases

=> interference between paths

phase = classical action/hbar

Use Landauer-Buttiker approach

  => need “geometric optics” for scattering matrix

  => need  classical dynamics of chaotic system

specular reflection

wavelength  <  detector size  <<  all other lengthscales

ignore diffraction here

Scattering matrix * transport properties

Dimensionless conductance :   g = tr [T] =  "nm |tnm|2

Scattering matrix: 

Transmission matrix : 

(Landauer-Buttiker)  

Shot noise : quantum noise in DC current (at zero temperature) 

Fano factor =                            +
current noise

average current (signal)

S = !dt < I(t)I(0) - I2 >  =  tr [T(1-T)]

tr [T(1-T)]

tr [T]



Semiclassics for scattering matrix

Energy Greens funct:  G(r,r0;E) = "' A' exp[i S' / h]

 A'
2 = classical stability of path '

Snm = (i/h)1/2 #dy0 #dy "' A' exp[i S' / h] <n|y> <y0|m>

h-1 #dy0 #dy "'1,'2 A'1 A'2 exp[i (S'1 - S'2)/ h] tr[t†t] = "nm |tnm|2 = 

"n <y|n><n|y’>  !  $ (y’-y) y0
y

y0 yScattering matrix elements:  

Diagonal terms:   "'1 A'1
2 […]  =  classical probability % […] 

Classical dynamics in generic chaotic system

Fully correlated survival Uncorrelated survival 

Here: If black path survives then so does purple path

Elsewhere: no correlation of survival
        even  when relative dynamics are fully correlated

W
p~pFW/L

L, p~pF
W
p~pFW/L

Fully correlated
(hyperbolic)

relative dynamics

“Uncorrelated”

relative dynamics

linearized Birkoff map

   (qi+1, pi+1) = M (pi,qi)

Paths at lead: paths from same lead have distance q < W, but if  :  

 (i)     p ~ pF   then 2 paths initially  “uncorrelated” 

 (ii) p << pF   then 2 paths initially  fully correlated 



Classical dynamics in phase space

Unfolded hyperbolic dynamics within the band

(relative to black path)

W1

2 W1

2

WL
1

2

assume: hyperbolic flow at small scales

  random flow on large scales

Weak Localization

    ! action difference $S = "-1EF ,2

Larkin-Khmelnikski (1982) 

Richter-Sieber (2002)

,

  ! each path has time-reverse 

with same action

A'2 ! A'1    so    "'1 A'1
2 […] = classical prob. % […]

weak-loc = classical prob. of loop % exp[ i action diff.]



Classical probability of crossing

      + (phase-space area)-1 
x ,d, x dt dtloop dtleg1

Uniform escape rate:  exp[-t/#D] for time of path t.

! Minimum time for

   loop :  tloop = 2"-1ln[,]       leg :   tleg=   "-1ln[,-1(W/L)]

! reduced escape probability  within tleg = "-1ln[,-1(W/L)] of crossing

Integral over crossing angles, , :   

     (phase-space area)-1 
x

 Re # ,d, ,2/("#D)  exp[ iEF ,2/ "h]      =>    N -1 

Is zero without ,2/("#D)    everything comes from finite length of legs/loop

Result: gwl = -1/4 % exp[-tE
cl/#D] 

#tloop+2tleg  dt  exp [-(t-2tleg)/#D] (t-(tloop +2tleg))2     =>  exp[-2tleg/#D] = ,2/("#D)
$

gwl ~ Drude conductivity x N -1 

due to paths > (tE
cl +tE

op)

|rnm|2coh. back. = $nm x classical prob. to return to mode m,  ( p=pm±h/W )

    Result: Rcbs =  1/2    independent of (tE
cl/#D)

Baranger-DiVincenzo-Jalabert-Stone (1991)

Richter-Sieber (2002)

… then transmission is tE
cl-dependent

 & reflection is tE
cl-independent

Current not conserved!    scattering matrix not unitary!!

Coherent back-scattering peak

! diagonal contribution

      '2 = exact time-reverse of '1

! actions of '2 & '1 equal

L lead

'1

Uncontrolled approx.

pm



Coherent back-scattering peak

INGREDIENTS as before

    ! $S and lengths in terms of (r0-, p0-) instead of ,

Reflection (weak-loc + backscatter)

Rwl = -1/4 % exp[-tE
cl/#D]

Result:  Rcbs =  1/2 % exp[-tE
cl/#D] 

Current conserved #    scattering matrix unitary #

due to paths > (tE
cl +tE

op)

Shot Noise tr [T] = tr [t†t] 
          = Drude cond. ('2 = '1)

Result: 
    F =  1/4 % exp[-tE

op/#D] 

tr [T2] = tr [t†t t†t] 

Fano factor =
tr [T(1- T)]

 tr [T]
For times < tE

op : contributions to tr [T2]

             cancel contributions to tr[T]

No contribution to 

       shot noise from paths < tE
op 

For times < tE
op : 

    contributions D4  => RMT result =1/4 for paths > tE
op 

    contributions D2,3 to tr [T2]   cancel  tr[T]



Summing to all orders in 1/N

Heusler-Muller-Braun-Haake, PRL 96, 066804 (2006) & cond-mat/0511292

But only valid for     0 < tE << tD

  i.e.  ("FL)1/2   <  W  <<  L ln (L/ "F)

Prove RMT results to all orders in N-1

Conclusions

Trajectories shorter than Ehrenfest time: “Classical” contributions
  (i)  noiseless

 (ii)  no interference effects

(iii)  separate subspace in scattering matrix (subject of another talk)

Cavity behaves like two cavities (two fluids)

 one quantum & one classical
                                                             … but quantum fluid not RMT

(proves 2-fluid model but invalidates effective RMT model)

Trajectories longer than Ehrenfest time: “Quantum” contributions
 (i)    random matrix theory (RMT) shot noise

 (ii)   suppressed weak localization & coherent backscattering

 goes to RMT only in limit tE << #D

 (iii) possibly RMT conductance fluctuations (Brouwer-Rahav)


