Institut Laue Langevin Grenoble, France.

Noise of quantum chaotic systems in the classical limit

Robert S Whitney

R.W. Phys. Rev. B 75 235404 (2007) R.W. and Ph. Jacquod, Phys. Rev. Lett. 96 206804 (2006) Ph. Jacquod and R.W. Phys. Rev. B 73 195115 (2006) R.W. and Ph. Jacquod, Phys. Rev. Lett. 94 116801 (2005)

OUTLINE

Quantum particles: Noise in current Classical particles: No noise in current

...and classical limit of quantum?

Random matrix theory (RMT) \Rightarrow "noise in classical limit" X

NEW REGIME in classical limit — Not RMT

Should revisit old questions for new regime: **Tunnel-barriers on leads**

NOISE DUE TO TUNNEL-BARRIER

 $\langle \delta \mathbf{I}^2 \rangle = \mathbf{F} \times \mathbf{e} \times \mathbf{I}$

Fano factor, F = (1 - transmission prob.)

Classical limit: wavelength $\lambda_{\rm F} \ll$ other scales

barriers \Rightarrow *impenetrable/transparent* \Rightarrow **noiseless**

CLASSICAL DETERMINISM

Bohigas-Giannoni-Schmit (1984):obeys random matrix theory?? $\langle \delta \mathbf{I}^2 \rangle = \mathbf{F} \times \mathbf{e} \times \mathbf{I}$ Fano factor, $\mathbf{F} = 1/4$

Classical limit ($\lambda_{\rm F} \ll W, L$) : noise in I remains

NO CLASSICAL DETERMINISM

...similar for integrable system (i.e. rectangle): not RMT, but expect noise

EXPERIMENT SAYS "NOT RMT"

Oberholtzer et al, Nature (2002)

$$\langle \delta \mathbf{I}^2
angle = \mathbf{F} imes \mathbf{eI}$$

...fits theory for smooth disorder

Aleiner-Larkin (1996,1997) Agam-Aleiner-Larkin (2000)

 $\lambda_{\rm F} \ll R$...introduced Ehrenfest time

RAY-OPTICS for the 21st century

Landauer-Büttiker: scattering matrix \Rightarrow Fano-factor $\mathcal{S} = \begin{pmatrix} \mathbf{r} & \mathbf{t} \\ \mathbf{t}' & \mathbf{r}' \end{pmatrix}$	$F = \frac{\operatorname{tr} \left[\mathbf{t}^{\dagger} \mathbf{t} - \mathbf{t}^{\dagger} \mathbf{t} \mathbf{t}^{\dagger} \mathbf{t} \right]}{\operatorname{tr} \left[\mathbf{t}^{\dagger} \mathbf{t} \right]}$
semiclassics (vanVleck/Gutzwiller): \sum over classica	/ paths from mode m to n
$\mathbf{t}_{nm} = \sum_{\gamma} \mathcal{B}_{nm} \times A_{\gamma} \exp\left[\mathrm{i}S_{nm} \right]$	$S_{oldsymbol{\gamma}}/\hbarig]$ join lead-modes $\Rightarrow \mathcal{B}_{nm}$
$\operatorname{tr}[\mathbf{t}^{\dagger}\mathbf{t}] = \underbrace{\overline{y_0}}_{\gamma 2} \underbrace{\gamma 1}_{\gamma 2} \operatorname{average} \overline{y}$	$\gamma 2 = \gamma 1$
$\operatorname{tr}[\mathbf{t}^{\dagger}\mathbf{t}\mathbf{t}^{\dagger}\mathbf{t}] = \underbrace{\frac{\gamma_{0}}{\gamma_{0}}}_{\gamma_{3}} \underbrace{\frac{\gamma_{1}}{\gamma_{2}}}_{\gamma_{3}} \operatorname{average} \underbrace{\frac{\gamma_{1}}{\gamma_{2}}}_{\gamma_{3}}$	γ^{1} γ^{2} γ^{2} γ^{3} encounter

Log. timescale: $T(r_{\min}) = 2\lambda^{-1} \ln[W/r_{\min}]$

Semiclassics: Integrate over $\exp[i\delta S(r_{\min})/\hbar]$

 \Rightarrow Encounter size $\sim \sqrt{\lambda_{\rm F}}$

 $\Rightarrow T(r_{\min}) \sim \text{Ehrenfest time} = \lambda^{-1} \ln[L/\lambda_{\mathrm{F}}]$

CALCULATING THE NOISE

Hand-waving argument for noise

wavepacket escapes in pieces $\Rightarrow RMT \ NOISE$

wavepacket escape as whole $\Rightarrow NO NOISE$

Suppression in classical limit

encounter

encounter

Classical limit: escapes without diverging to $\simeq W$

 $F \propto \mathrm{tr} \left[\mathbf{t}^{\dagger} \mathbf{t} - \mathbf{t}^{\dagger} \mathbf{t} \mathbf{t}^{\dagger} \mathbf{t} \right] \rightarrow \text{ zero}$

Recover CLASSICAL DETERMINISM Classical limit noiseless \Rightarrow *not* random matrix theory (RMT)

proposed in Beenakker, van Houten (1991)

NEW CLASSICAL REGIME

Dwell time, au_D , is time to escape system

Weight of non-classical contributions

= probability to escape before Ehrenfest time, $au_{\rm E}$

 $= \exp[-\tau_{\rm E}//\tau_{\rm D}]$

 $\Rightarrow \text{RMT-to-CLASSICAL cross-over } \textit{powerlaw} \text{ in } L/\lambda_{\rm F}, \\ \text{exponent} = (\lambda \tau_{\rm D})^{-1} \ll 1$

PHASE-SPACE (PS) BASIS

• complete & orthonormal basis: states *localized* in *r* and *p*

Classical limit: DIAGONALIZE scattering matrix ALL eigenvalues = 0,1 ALL cummulants of noise = 0

TUNNEL-BARRIERS ON LEADS

Exhausive list of contributions

EXAMPLE: Tunnel-barrier on third lead

CONCLUSIONS

Noiseless transport in classical limit

• "wavepacket" escapes as a whole before spreading to lead width

