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Abstract. We present a semiclassical theory for the scattering matrix S of a chaotic ballistic cavity
at finite Ehrenfest time. Using a phase-space representation we show that the Liouville conservation
of phase-space volume decomposes S as S = S cl ⊕S qm. The short-time, classical contribution
S cl generates deterministic transmission eigenvalues T = 0 or 1, while quantum ergodicity is
recovered within the subspace corresponding to the long-time, stochastic contribution S qm. This
provides a microscopic foundation for the two-phase fluid model, in which the cavity acts like a
classical and a quantum cavity in parallel. Our model shows that the Fano factor of the shot-noise
power vanishes in this limit, while weak-localization remains universal.
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Introduction: In recent years it has been possible to make electronic systems clean
enough that the electron have a mean free path significantly longer than the size of the
potential that confines them[1]. The electrons then move ballistically in these quantum
dots, in a manner strongly related to classical dynamics in the dot. When this classical
motion is chaotic the transport properties are usually universal and well-captured by
random matrix theory (RMT). However once the Ehrenfest time becomes a relevant
parameter this universality is broken and the transport properties cease to be described
by RMT [2]. Elsewhere [3, 4] we explore the role played by the Ehrenfest time in a clean
chaotic system connected to two leads in the limit where the Fermi wavelength is much
smaller than all system lengthscales (system size, lead widths). Here we define open-
cavity Ehrenfest times in such systems and emphasise their relevance to the transport
properties. We then show that for finite open-cavity Ehrenfest time the cavity scattering
matrix is block diagonal and hence behaves like two cavities in parallel. One of these
cavities is classical in nature the other is quantum. We prove that the classical cavity’s
transmission eigenvalues are all zero or one, so its transport properties are deterministic
and hence noiseless. Meanwhile the quantum cavity is stochastic, with its transport
properties exhibiting quantum noise. Finally we touch on the consequences of this for
the Fano factor and the quantum (weak localisation) correction to conductance.

Ehrenfest times : Ehrenfest times are the time-scales on which quantum effects start
to become relevant in the evolution of a wavepacket. We consider a chaotic cavity of
size L and Lyapunov exponent λ which connected to two leads (Left and Right) with
widths WL,WR; where L,WL,WR are all much larger than the Fermi wavelength, h̄/pF.
There are two open-cavity Ehrenfest times [5] associated with modes entering the cavity
from the Left (L) lead;

τLR
E = λ−1 ln[h̄−1

eff (WLWR/L2)], τLL
E = λ−1 ln[h̄−1

eff (W
2
L /L2)], (1)
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FIGURE 1. On the left is a plot of a PS-state as a function of dimensionless position (dark line); for
comparison we plot the wavefunction of the coherent state (grey line). Both wavefunctions have the same
shape as a function of P as they do as a function of Q (up to a scaling factor). The PS-state’s oscillations
make it orthogonal to PS-states centred at finite Q, and its broadened peak (w.r.t. the coherent state)
makes it orthogonal to PS-states centred at finite P. On the right we show two bands on the Left lead (in
grey), with PS-states super-imposed on them (ellipses). The lattice of PS-states has been stretched/rotated
to maximise the number of PS-states in each band (solid-edged ellipses) while minimising the number
partially in each band (dashed-edged ellipses). Thus the PS-states have the same aspect ratio as the band.

where the dimensionless Planck constant h̄eff = h̄/(pFL). The first time is for transmis-
sion (L to R) and the second is for reflection (L to L). In addition there is the closed-
cavity Ehrenfest time [2,6-9], τcl

E = λ−1 ln[h̄−1
eff ], unlike those above it is a property of

the cavity itself and is independent of the size of the leads.
The three time-scales can be derived as follows. We assume the cavity is a two-

dimensional hyperbolic chaotic system. Then the Poincaré surface of section perpen-
dicular to any trajectory is a two-dimensional phase space (r⊥, p⊥), which we make
dimensionless by writing distances in units of L and momenta in units of pF. Then the
Liouvillian flow on the Poincaré surface of section stretches exponentially, with rate λ
in the unstable direction, while compressing exponentially in the stable direction. The
Ehrenfest times are then given by λ−1 ln[h̄−1

eff XY ] where X and Y are dimensionless sys-
tem lengthscales; WL/L, WR/L or 1. This is the time for a wavepacket with width X
in the stable direction (and hence h̄eff/X in the unstable direction) to spread under the
Liouvillian flow to width Y in the unstable direction. We note that for all times of rele-
vance here, the evolution of wavepackets inside the system is well approximated by the
Liouvillian flow of the classical dynamics.

Bands in the classical phase-space (PS): The finiteness of τD (the dwell time for
trajectories in the cavity) means that classical trajectories injected into a cavity are
naturally grouped into PS transmission and reflection bands [12], despite the ergodicity
of the associated closed cavity. Each band on the PS cross-section of the L lead (see
Fig. 1) consists of a group of classical paths which exit through the same lead after the
same number of bounces, τ , (having followed similar paths through the cavity). Because
of the chaotic classical dynamics, bands with longer escape times are narrower, having



a width (and hence a PS area) scaling like ∝ exp[−λτ]. The Ehrenfest time is the time
at which this area becomes smaller than h̄eff. Thus only for times shorter than this can a
band carry one (or more) whole quantum wavepacket.

Counting classical and quantum modes in the scattering matrix: All trajectories
which exit through the R lead at τ < τLR

E will be in bands with phase-space area larger
than h̄eff. We show below that these modes are classical. Thus the number of transmitting
(reflecting) classical PS-states is given by the area of the L lead’s phase-space which
couples to transmitting (reflecting) trajectories with τ < τLR

E (with τ < τLL
E ). The total

number of classical modes in the L lead is the sum of these two;

Ncl
L = [NL +NR]−1[N2

L(1− e−τLL
E /τD)+NLNR(1− e−τLR

E /τD)
]

(2)

All other modes of the L lead sit over many transmission bands with τ > τ LR
E or reflection

bands with τ > τLL
E , and so they are quantum PS-states; thus Nqm

L = NL −Ncl
L . We can

do the same for the phase-space of the R lead by swapping L and R throughout.
The phase-space basis: Below we write the scattering matrix S in a PS-basis,

whose construction we now summarize, for details see [4]. We construct the PS-basis
by covering all phase-space bands with area bigger than h̄eff with a lattice of PS-states
of the form shown in Fig. 1. The lattice is stretched and rotated to optimally cover each
band (as in Fig. 1). All states on the lattice covering each such band are orthonormal, and
the basis is complete on the parts of phase space which are covered by these bands. The
position of the lattice on each band is chosen such that each ingoing PS-state evolves
under the cavity dynamics to exit as exactly one outgoing PS-state. Each basis states
exits at a time less that τLR

E (for transmission) or τLL
E (for reflection). It exit as a single

wavepacket at a single time; thus it behave deterministically; i.e. like a classical particle
with its quantum nature completely hidden.

The remaining phase-space (made of classical bands with phase-space area less than
h̄eff) is covered by states chosen simply to complete the basis. The fact that the basis is
already complete on the bands with area larger than h̄eff, means that each remaining PS-
states must sit on many bands in the classical phase space which exit at many different
times. Thus these PS-basis states exhibit strongly quantum behaviour.

Scattering matrix in the PS-basis: The transformation from the basis of lead modes
to the PS-basis is unitary because both bases are complete and orthonormal. Thus this
transformation leaves unchanged the eigenvalues of the scattering matrix, S , and the
transmission matrix T = t†t (where t is the L to R transmission block of S ). In the
PS-basis, the scattering matrix takes the form

S = Scl ⊕Sqm =

(

Scl 0
0 Sqm

)

(3)

The matrix Scl is Ncl ×Ncl while the matrix Sqm is Nqm ×Nqm, with Ncl = Ncl
L + Ncl

R
and Nqm = Nqm

L + Nqm
R . The matrix Scl must have only one non-zero element in each

row and column. After re-ordering the labels of the modes on L and R, we can write

Scl ≡

(

rcl t′cl
tcl r′cl

)

tcl =

(

t̃cl 0
0 0

)

rcl =

(

0 0
0 r̃cl

)

(4)



The matrices t̃cl and t̃′cl are n× n, where n = [NLNR/(NL + NR)]exp[−τLR
E /τD] is the

number of classical transmission modes. The matrix r̃cl is (Ncl
L − n)× (Ncl

L − n) and r̃′cl
is (Ncl

R −n)×(Ncl
R −n). The matrix t̃cl is diagonal with elements given by t̃i j = eiΦiδi j The

matrix r̃cl has a more complicated structure; it has exactly one non-zero element in each
row and each column. Thus we have diagonalised Ncl

L of the modes of the transmission
matrix, T . It has n modes with eigenvalue Tα = 1 and Ncl

L − n modes with eigenvalue
Tα = 1. As noise ∝ ∑α Tα(1−Tα), all these modes are noiseless. In the classical limit the
proportion of such classical (noiseless) modes goes to one [10]. The remaining modes
(which remain numerous despite their proportion going to zero) are quantum in nature
and are unitary within their own subspace, Sqm [11].

Average conductance: All transmitting quantum and classical modes carry current,
so the dimensionless conductance equals NLNR/(NL +NR) ∝ h̄−1.

Zero-frequency noise and the Fano factor : As the classical modes are noiseless, all
noise is generated by the quantum modes. The number of quantum (noisy) transmission
modes is [NLNR/(NL + NR)]exp[−τLR

E /τD] goes to infinity in the classical limit h̄ → 0.
However the Fano factor ∝ (noise/average current) scales like exp[−τ LR

E /τD], vanishing
as h̄ → 0. This fits numerical and experimental [13] observations and has qualitative
agreement with the earlier microscopic theory [6].

Weak localisation (WL): Recent numerics [14] have called into question previous
microscopic theories [2, 9] which predicted that the WL correction to conductance
decays like exp[−τcl

E /τD]. We perform a calculation similar to [8, 9] for the quantum
modes (the classical modes have no WL correction); for details see [4]. The result in
eq. (3), provides a factor of τLR

E which cancels the τcl
E in the exponent, leading to the

universal (RMT) result even as h̄ → 0 (for well developed chaos, λτD � 1).
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